All Saints, Laxfield Primary School

September 2022 Calculation Policy

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school.

This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children thro ugh the use of concrete, pictorial and abstract representations.

Concrete representation- a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.

Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.

Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, being moved onto the next level as soon as they are ready, or working at a lower stage until they are secure enough to move on.

Providing a context for calculation:

It is important that any type of calculation is given a real life context o r problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

- Explore part part whole relationship- combining two parts to make a whole

- Using the ten frame/egg boxes to support addition of single digits- counting all/ combining two groups

Year One

- Combining two parts to make a whole: part whole model. Joining two groups and then recounting all objects

- Using ten frames, Singapore bars and egg boxes.

Make 9 in one and 3 in the other. Take one from
the 3 to make the 9 into a ten.... $10+2=12$

- \quad The + and $=$ signs and missing numbers

Children need to understand the concept of equality before using the ' $=$ ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.
Example
$2=1+1$
$2+3=4+1$
$3=3$
$2+2+2=4+2$

- Missing numbers need to be placed in all possible places.

$$
\begin{array}{ll}
3+4= & =3+4 \\
3+=7 & 7=+4 \\
+4=7 & 7=3+
\end{array}
$$

- Use of prepared number lines and concrete objects

- Children are encouraged to record by drawing jumps on prepared lines.

Year Two

- Using concrete and pictorial representations to add a 2 digit number to a 1 digit number and a 2 digit number to a tens number.

Step 1 Add the ones.

Step 2 Add the tens.

$19+20=39$

- The + and $=$ signs and missing numbers

Continue using a range of equations (See Year 1) but with appropriate, larger numbers as specified in Year 2 age level standards, i.e. extend to $14+5=10+$ and $32++=10035=$ $1++5$.

- Partition into tens and ones and recombine

$$
\begin{aligned}
12+23 & =10+2+20+3 \\
& =30+5 \\
& =35
\end{aligned}
$$

- Partitioning the second number only

Example: Add 9 or 11 by adding 10 and adjusting by $135+9=44$

- Using the bar model to find missing digits: It is important for the children to use the bar model in this way to encourage the use of it to aid problem solving.

Helenhas 14 breed-
sticks. Her friend hos
17. How many do they
hove altogether?

- Towards end of year 2, children to begin to learn the written formal method for addition. This will prepare them for year 3 and Key Stage 2.

Year Three

- \quad The + and $=$ signs and missing numbers

Continue using a range of equations as in Year 1 and Year 2 but with appropriate larger numbers specified in the age level standards.

- Progression from deanes to formal written method.

- Progression in mental calculations with larger numbers

Calculate HTU + U
Calculate HTU + TU
Calculate HTU + HTU

- Progress from no crossing of boundaries to crossing of boundary.
- Partition into tens and ones and recombine Develop from Year 2- partitioning both numbers and recombining.
- Refine to partitioning the second number only:
$36+53=53+30+6$

$$
=83+6
$$

$$
=89
$$

- Add a near multiple of 10 to a two -digit number Continue work from Year 2 but with appropriate numbers: $35+19$ is the same as $35+20-1$.
- Formal methods of columnar addition to add numbers with up to three digits

285
$+73$
8
150
200
358

- Extend to decimals in the context of money

```
£ 2.50 + £ 1.75
    £2.50
    +£1.75
    £4.25
            1
```

- The expanded method should be used if children experience persisting difficulties.
- Children should then progress to the formal written method for addition. This should be taught early on in the year.
- Bar model to be used to help children with word problems.

Year Four

- \quad The + and $=$ signs and missing numbers
- Continue using a range of equations as in Key Stage 1 and Year 3 but with appropriate numbers.
- Partition into hundreds, tens and ones and recombine Either partition both numbers and recombine or partition the second number only e.g.

$$
\begin{aligned}
358+73 & =358+70+3 \\
& =428+3 \\
& =431
\end{aligned}
$$

- Add or subtract the nearest multiple of 10 or 100 , then adjust
- Continue as in Year 2, 3 and 4 but with appropriate numbers e.g. $458+79$ is the same as 458 +80-1
- Addition of numbers with at least four digits using formal method of columnar addition

The formal, efficient method of columnar addition will involve crossing of boundaries (at the tens, hundreds and/or thousands). Take a systematic approach to teaching this looking at crossing each boundary in turn before mixed practice.

- Revert to expanded method if children experience difficulties.
- Extend addition to decimals (same number of decimals places) and adding several numbers (with different numbers of digits).
- Bar modelling and part part whole to also be taught alongside this to develop word problems.
- Deanes and place value counters to also be used to help enforce understanding.
- Using concrete strategies for counting

Taking away after counting out practical equipment.
Children would be encouraged to physically remove
these using touch counting.

By touch counting and dragging in this way, it allows
so they don't have to keep recounting They will then
touch count the amount that are left to find the
answer.

Those who are ready may record their own
calculations

- Using the ten frames to support subtraction by taking away

$$
8-4=
$$

0	1	2	3	4	5	6	7	8	9	10

Year One

- Subtracting using the part part whole model

- When subtracting using Dienes children should be taught to regroup (rename) a ten rod for 10 ones and then subtract from those

$20-4=16$
- \quad The - and $=$ signs and missing numbers
$7-3=$?
? $=7-3$
7-? $=4$
$4=?-3$
- Use of pictures, marks and concrete objects
- Sam spent 4p. What was his change from 10p?

- Number Lines

Example-Counting Back/Down
11-7

$\begin{array}{lllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

- Children are encouraged to record by drawing jumps on prepared lines and constructing their own lines.

Year Two

- Using pictorial and concrete representations using objects and deanes.

Step 1 Subtract the ones.
8 ones -3 ones $=5$ ones

Step 2 Subtract the tens.

$28-3=25$

- \quad The - and = signs and missing numbers

Continue using a range of equations (See Year 1) but with appropriate numbers in relation to Year 2 age-level standards, i.e. extend to $14+5=20-1$.

- Find a small difference by counting up
$42-39=3+1$
394042

Example: Subtract 9 or 11 \& begin to add/subtract 19 or 21
35-9 = $26 \quad+1$

Use known number facts and place value to subtract
(Partition second number only) $37-12=37-10-2=27-2=25$

Year Three

- Use pictorial and concrete resources to develop formal written subtraction. Use of deanes and part part whole model.

- \quad The - and $=$ signs and missing numbers

Continue using a range of equations as in Year 1 and Year 2 but with appropriate larger numbers specified in the age level standards.

- Find a small difference by counting up

Continue from Year 2 but with appropriate numbers, e.g. 102-97=5

- Subtract mentally a 'near multiple of 10 ' to or from a two-digit number, extending to three digit numbers
Continue as in Year 2 but with appropriate numbers e.g. 78-49 is the same as 78-50+1
- Progression in mental calculations with larger numbers

Calculate HTU - U
Calculate HTU - T
Calculate HTU - H
Progress from no crossing of boundaries to crossing of boundary.

- Bar model to be used for word problems.
- Formal methods of columnar subtraction to subtract numbers with up to three digits
- See Appendix 1 examples in Year 5 and Year 6 section of this document.
*From Year 3 onwards, teachers need to keep in mind the methods specified in age-level standards for end of Key Stage 2. Children should be developing their capacity to use formal written methods for all four number operations.

Year Four

- \quad The - and $=$ signs and missing numbers

Continue using a range of equations as in Key Stage 1 and Year 3 but with appropriate numbers.

- Differences

Find a difference by counting up, e.g. $8006-2993=5013$. This can be modelled on an empty number line.

- Use known number facts and place value to subtract decimals $6.1-0.4=5.7$

- Subtraction with at least four digits using formal method of columnar subtraction For instance, 6467-2684 = 3783
Using expanded column subtraction where children experience difficulty with decomposition.
- Extend subtraction to decimals (same number of decimals places) and adding several numbers (with different numbers of digits)
- Bar modelling and part part whole to also be taught alongside this to develop word problems.
- Deanes and place value counters to also be used to help enforce understanding.

As specified in Year 3, teachers need to keep in mind the methods specified in age-level standards for end of Key Stage 2. Children
should be developing their capacity to use formal written methods for all four number operations.

- Experiencing equal groups of objects

Year One

- Use of pictures and objects

There are 3 sweets in one bag.
How many sweets are there in 5 bags?

- Count in multiples of one, two, five and ten Counting steps using bead string and on prepared number lines.
$00000-0000-$
Counting in multiples using a range of objects, e.g. pairs of legs on animals; fingers in gloves etc.
- Use of arrays
- Counting in rows and columns

Two groups of three is six
Three groups of two is six

So $6=2+2+2$ or $6=3+3$

Year Two

- The \times and $=$ signs and missing numbers
$7 \times 2=$?
$?=2 \times 7$
$7 x ?=14$
$14=? \times 7 \quad ? \times 2=14$
- Use materials, arrays, repeated addition
(including solving problems in context)
기 미 미
기 4×2 or $4+4$ ㄱำ
낼
2×4

Or repeated
 addition
$2+2+2+2$

Year Three

- \quad The \times and $=$ signs and missing numbers

Continue using a range of equations as in Year 2 but with appropriate numbers in relation to age-level standards.

- TU×U

Use known facts $\times 3, \times 4, \times 8$ (Year 3 age-level standards) and $\times 2, \times 5$ and $\times 10$ (Year 2 age-level standards).

x	30	5	x	30

- At Year 3, children progress to using more formal written methods. In this case, the grid method drawing on knowledge of place value, multiplication facts and their ability to recombine partitioned numbers to derive an answer.
- Bar modelling to be used in word problems.
*From Year 3 onwards, teachers need to keep in mind the methods specified in age-level standards for end of Key Stage 2. Children should be developing their capacity to use formal written methods for all four number operations.

Year Four

- The \times and $=$ signs and missing numbers Continue using a range of equations but with appropriate numbers for Year 4.
- TU $\times U$ (See Year 3) and HTU $\times U$ (Introduced in Year 4 age-level standards). Partition
$23 \times 4=92$
$23 \times 4=(20 \times 4)+(3 \times 4)$
$=(80)+(12)$
$=92$
- Use the grid method of multiplication 23×7 is approximately $20 \times 10=200$

x	20	3
7	140	21

As specified in Year 3, teachers need to keep in mind the methods specified in age-level standards for end of Key Stage 2. Children
should be developing their capacity to use formal written methods for all four number operations.

NB: It is at the teacher's discretion on whether they progress the year 4s onto the formal written method of short multiplication. This will depend on the ability of the class and the children.

- Sharing practical objects

Year One

- Use of pictures and objects or marks

Children get into teams of 4 to play a game. How many teams are there?

- Sharing

6 sweets are shared between 2 people. How many do they have each?

- Make use of practical activities involving sharing, e.g. distributing cards when playing a game, putting objects onto plates, into cups, hoops etc.

Year Two

- \quad The \div and $=$ signs and missing numbers
$6 \div 2=$?
$?=6 \div 2$
$6 \div ?=3$
$3=6 \div$?
$? \div 2=3$
$3=? \div 2$
- Use materials, arrays, repeated addition (including solving problems in context)
- Use of sharing and grouping

- Sharing

6 sweets are shared between 2 people.

- Grouping

There are 6 sweets.
How many people can have 2 each?

(How many 2's make 6?)

Find and name fractions of length, shape and sets of objects and quantities
Use of diagrams- count all equal parts to determine denominator. Link to division into equal groups/parts.

Year Three

- MD3.2 The \div and $=$ signs and missing numbers Continue using a range of equations as in Year 2 but with appropriate numbers in relation to age-level standards.
- MD3.2 TU \div U Grouping
- How many 3 s make 18 ?

- MD3.2 \& MD3.3 Remainders
- $16 \div 3=5 r 1$
- Sharing - There are 16 sweets shared between 3, how many left over? Grouping - How many 3s make 16 , how many left over?

$03 \quad 6 \quad 9 \quad 121516$
- Children with secure knowledge of multiplication facts and subtraction may progress to 'chunking' where TU are divided by U.
*From Year 3 onwards, teachers need to keep in mind the methods specified in age-level standards for end of Key Stage 2 (See Year 5 and Year 6 Calculation Policy Document). Children
should be developing their capacity to use formal written methods for all four number operations.
- \quad The \div and $=$ signs and missing numbers

Continue using a range of equations but with appropriate numbers for Year 4.

- MD4.3 Sharing and grouping $30 \div 6$ can be modelled as:

Grouping - groups of 6 taken away and the number of groups counted e.g.
$+$

Sharing - sharing among 6, the number given to each person.

- Remainders

Note three approaches below:
$41 \div 4=10 r 1$
+40

$41(10 \times 4)+1$

Towards the end of year 4 children will begin to develop short division to prepare them for the formal written methods in year 5 and year 6.
$98 \div 7$ becomes

Answer: 14
$432 \div 5$ becomes

Answer: 86 remainder 2
$496 \div 11$ becomes

Answer: $45 \frac{1}{11}$

As specified in Year 3, teachers need to keep in mind the methods specified in age-level standards for end of Key Stage 2 (See Year 5 and Year 6 Calculation Policy Document). Children should be developing their capacity to use formal written methods for all four number operations.

The exemplification of formal methods here should be taken into account by all Key Stage 2 teachers so children are adequately prepared by Year 5 and into Year 6 to use the means of calculating specified in age-level standards.

Addition \& Subtraction

MD5.7 \& ASMD6.2b
Short Division
(DfE, 2013, Appendix 1)

$496 \div 11$ becomes

Answer: $45 \frac{1}{11}$

MD5.5 \& ASMD6. 1 Long
Multiplication
(DfE, 2013,
Appendix 1)

		6	3	2	1
x				1	5
	3	1_{1}	6_{1}	0	5
+	6	3	2	1	0
	9	4	8	1	5

		6	3	2	1
x				2	5
+	3	1_{1}	6_{1}	0	5
1	2	6	4	2	0
1	5	8	0	2	5

ASMD6.2a
Long Division
(DfE, 2013, Appendix 1)

Answer: 28 remainder 12
$432 \div 15$ becomes

$432 \div 15$ becomes

Long division will be at the teacher's discretion. Children are able to do double digit division using the short method of division.

